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LETTER TO THE EDITOR 

Universal order-parameter profiles in confined critical systems 
with boundary fields 

Theodore W Burkhardtt and Erich EisenrieglerS 
Institut Laue-Langevin, 156X, F-38042 Grenoble Cedex, France 

Received 1 November 1984 

Abstract. We consider systems at the bulk critical temperature with an ordering field 
applied at the boundary. For various boundary geometries, universal expressions for the 
spatial dependence of the order parameter are obtained by conformal mapping of the 
known results for the half space. Analytical results for strip, wedge and other two- 
dimensional geometries and for systems with spherical boundaries in arbitrary dimensibn 
are given. 

Recognition of the constraints imposed by conformal invariance of correlations at 
critical points (Polyakov 1970, Wegner 1976) has resulted in considerable progress in 
both bulk critical phenomena (Belavin et a1 1984, Dotsenko 1984, Friedan e? a1 1984) 
and in surface critical phenomena (Cardy 1984a, b, Cardy and Redner 1984). Confor- 
mal invariance restricts the form of bulk and surface correlation functions and in two 
dimensions completely determines both correlation functions and critical exponents. 

The work of Cardy (1984a, b) and of Cardy and Redner (1984) on surface critical 
phenomena is primarily concerned with the ‘ordinary’ critical behaviour (Binder 1983) 
of two-point correlations at the bulk critical temperature. Conformally invariant 
Dirichlet boundary conditions, i.e., vanishing of the order-parameter density at the 
boundaries, are imposed. 

In this letter we consider another conformally invariant boundary condition. At 
the boundaries the system is subject to an infinite ordering field. The ordering field 
induces a non-zero order parameter at the bulk critical temperature that increases to 
its maximum value at the boundaries of the system. We derive universal expressions 
for the spatial dependence of the order parameter for several different boundary 
geometries. 

In the case of a magnetic system, the ordering field corresponds to a magnetic field 
applied only to the boundary spins. The ordering-field boundary condition is realised 
physically in a binary mixture bounded by walls that exert a short-range preferential 
attraction on one of the two species (Fisher and de Gennes 1978). 

In a semi-infinite critical system with an infinite ordering field at the boundary, 
ordinary scaling completely determines8 the order-parameter profile at bulk criticality. 

t Permanent address: Department of Physics, Temple University, Philadelphia, PA 19122, USA. 
$ Permanent address: Institut fur Festkorperforschung der Kernforschungsanlage, D-5 170 Jiilich, FRG. 
5 We restrict our attention to the continuum limit ri >> a, where a is the lattice constant or equivalent 
microscopic length. For rL - a there is a crossover to a different rL dependence, with a finite limit as rL 
approaches zero. 
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The order parameter ( & ( r ) )  varies as 

(b(r))semi-infinite = ArLXb ( 1 )  

(Fisher and de Gennes 1978, Rudnick and Jasnow 1982, Brbzin and Leibler 1983). 
Here A is a constant amplitude, and rl is the perpendicular distance from the surface 
to point r. The bulk scaling dimension xb of the order-parameter density 4( r )  is related 
to the conventional critical exponents by 

(2) b -1 - 2(d - 2 +  7) = /3/ V .  

Cardy (1984a, b) and Cardy and Redner (1984) have determined the ordinary 
critical behaviour of two-point correlations in several two-dimensional boundary 
geometries by conformal mapping of the results for the half space. Below, the same 
procedure is followed, except that we consider the order-parameter profile instead of 
two-point correlations. 

A mapping r + r' is conformal if it corresponds locally to a rotation and a dilation 
(Polyakov 1970, Wegner 1976). Under a conformal mapping the order parameter 
transforms according to 

( 4 ( r ' ) ) G ' =  b ( r )*b (4 ( r ) )G  (3) 
at criticality (Cardy 1984a, b). Here b( r )  is a position-dependent length-rescaling factor 
corresponding to the local dilation, i.e., b ( r ) - d  = lar'/drl is the Jacobian of the transfor- 
mation. The ensemble averages in (3) are evaluated with original and transformed 
boundary geometries G and G', respectively. 

In d = 2 dimensions, conformal mappings correspond to transformations of the 
form z + w, where w = U + iu is an arbitrary analytic function of the complex variable 
z=x+iy .  In d =2,  (3) becomes (Cardy 1984a, b) 

( 4 ( w ) ) G ' =  ~ w ' ( z ) ~ - ~ ( ~ ( z ) ) G *  (4) 
In higher dimensions the conformal group is less rich, its generators consisting of 
homogeneous translations, rotations and dilations, and special transformations of the 
form 

r ' / r r2=  r / r 2 +  R / ( 2 R 2 ) ,  ( 5 )  

where R is an arbitrary constant vector, that map hyperspheres onto hyperspheres 
(Polyakov 1970, Wegner 1976). 

We now turn to some specific examples. Consider, firstly, the order-parameter 
profile in a two-dimensional strip of width L and infinite length. The transformation 

(6) 
maps the upper half plane y = Im z 3 0 conformally onto the infinite strip 0 s U s L, 
U = Im w. Inserting equations ( 1 )  and (6) ,  with r, = y, into (4), one finds 

(7) 
The order parameter is independent of U, as expected?. The profile described by 
equation (7) is universal in a more general sense than the universality of critical 
exponents or scaling functions. The functional form (7) applies to any critical system 
with strip geometry and strong ordering-field boundary conditions. Only the amplitude 
A and the index xb depend on the particular system under consideration. 
t Reversing the above steps, one sees that equation ( I )  is implied by (4), ( 6 ) ,  and the requirement that 
(d(w)),,,,, be independent of U. Thus ( I )  is also a consequence of conformal invariance. 

w = (L/ 7r)ln z 

(4( w))strip = A [ ( L /  r ) s i n ( ~ v /  L)3-a. 



Letter to the Editor L85 

In the limit U /  L e  1 equation (7) may be expanded in the form 

( + ( w ) ) , , " , = A u - ~ [ ~  + ~ x ~ ( v u / L ) ~ + .  . .I. (8) 

The first term on the right-hand side is consistent with the semi-infinite result ( l ) ,  as 
expected. The correction term is compatible with the L-d dependence of the contribu- 
tion to the order parameter from a distant wall conjectured by Fisher and de Gennes 
(1978). 

Next we derive an expression for the order parameter in a semi-infinite strip. The 
upper half z plane is conformally mapped onto the domain U S O ,  0 s  u s  L by the 
function 

w = ( L /  .rr)cosh-' z. (9) 

Inserting (1) and (9) into (4), one obtains the universal profile 

( + ( w ) ) ~ ~ ~ ~ ~ ~ ~ ~ =  A { [ ( L / r )  sinh ( v u / L ) ] - ~ ~ . [ ( L / v )  sin ( V V / L ) ] - ~ } % ' ~ .  (10) 

In the limit U >> L, (10) reduces to (7), as expected. 

use the conformal transformation 
To obtain the order-parameter profile in a two-dimensional wedge geometry, we 

w = z e / r  (11) 

that maps the upper half z plane onto the open wedge 0 s  o s a, where w = I w /  exp(iw). 
The corresponding order parameter is given by 

(+(w))we,ge = A[(a/ T ) ( w J  sin(aw/a)I-%. (12) 

We now briefly consider two-dimensional systems bounded by closed curves of 
finite length. According to complex-variable theory (see, e.g., Fuchs and Shabat 1964), 
for any closed curve C there exist functions that conformally map the interior of C 
onto the upper half plane and the curve C onto the real axis. (This is physically clear 
from the connection between conformal mapping and two-dimensional electrostatics, 
see, e.g., Morse and Feshbach (1953).) Thus for each such boundary there is a 
corresponding order-parameter profile that is universal in the same sense as the profiles 
considered above. For examples of conformal transformations that map closed two- 
dimensional domains onto the half plane, we refer to standard texts on complex 
variables and on electrostatics. Here only rectangular and circular two-dimensional 
domains are considered. 

The upper half z-plane is mapped onto the rectangular domain -$a s U s $a, 
0 G U s b by the transformation (see, e.g., Fuchs and Shabat 1964) 

w = C 1; d t [ (  1 - t 2 ) (  1 - k 2 t 2 ) ] - 1 / 2  

The constants C and k are fixed by the requirements that the points 1 and I l k  on the 
positive x-axis map onto w = $ a  and w = ; a  + ib, respectively. The elliptic integral in 
equation ( 13) precludes analytic evaluation of the corresponding order parameter in 
terms of elementary functions. 

The order-parameter profile in a two-dimensional system with a circular boundary 
can be worked out analytically. It is a special case of the result for hyperspherical 
boundaries in general dimension d, which we now discuss. 

From the remarks about the generators of the conformal group in the paragraph 
containing (9, it is clear that in more than two dimensions, the most general conformal 
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transformation maps hyperspheres onto hyperspheres. The plane 2. r = 0, where I? is 
an arbitrary fixed unit vector, corresponds to a hyperspherical surface of infinite radius. 
The special conformal transformation ( 5 )  maps thisplane onto a typerspherical surface 
of radius R with centre at R. The half spaces R * r > O  and R . r < O  map onto the 
interior and exterior of this hypersphere, respectively. The homogeneous translation 

(14) r” = r’ - R 

shifts the centre of the hypersphere to the origin of the double-primed coordinate 
system. The scale factor b ( r )  = Idr”/drl-”d corresponding to the conformal mapping 
r +  r“ is given by 

b ( r )  = 1 + R .  r / R 2 +  r2/(4R2) =4R2/(r“-  R)*. (15) 

With the mapping r -* rrr, 2. r > 0, we determine the order-parameter profile in a 
hypersphere of radius R with a strong ordering field at th,e surface from the profile 
(1) for semi-infinite geometry. Applied to the half space Re r < 0, the mapping gives 
the order parameter in an infinite critical system with ordering-field boundary conditions 
at the walls of a spherical cavity of radius R. Combining equations ( l ) ,  (3), (9, (14), 
( 1  5 ) ,  one obtains the formula 

(44r~’))spIlere = A(tRI1 - (rII/R)21)-% (16) 

which holds for either geometry. Note that the spatial dimension d does not appear 
explicitly in equation (16). 

In the asymptotic regime Iro- RI<< R, i.e., close to the spherical wall, the order- 
parameter profile reduces to Air"- RI-%, consistent with the semi-infinite result ( 1). 
Far outside the spherical cavity, i.e., for r“>>R, the order parameter decays as 
A(2R)5(rlf)-*5, with the same critical exponent 2xb = d - 2 +  7)  as the bulk pair correla- 
tion function. 

Thus far only infinite boundary fields have been considered. The following heuristic 
scaling argument suggests that sufficiently far from the walls of a sufficiently large 
system, the order-parameter profiles for finite and infinite boundary fields coincide. 

At a distance x from the boundary of a critical system with characteristic size L, 
the order parameter m scales as 

m(x, L, tl(l), hI(1)) = b-”.m(x/b, L/b ,  t , ( b ) ,  h , ( b ) )  (17) 

(Fisher and de Gennes 1978). Here b is the length-rescaling factor, and t , ( l ) ,  h , ( l )  
and t , ( b ) ,  h , ( b )  denote the original and rescaled surface couplings and surface fields. 
We assume in ( 17) that x >> a, where a is the lattice constant or average intermolecular 
distance, so that the order parameter scales with the bulk index xb of equation (2). 
We now consider values of x, L, and b so large that t , ( b )  and h , ( b )  may be replaced 
by fixed-point values. Since m(x, L, t l ( l ) ,  h, ( l ) )  is independent of t l ( l )  and h , ( l )  in 
this regime, the profiles for infinite and finite boundary fields are the same. BrCzin 
and Leibler (1983) have shown this explicitly for the semi-infinite continuum Ising 
model in 4-  E dimensions. For distances rl much greater than surface correlation 
lengths (( t , )  and [ ( h , ) ,  the order parameter is given by equation ( l ) ,  with an amplitude 
A independent of t l  and h , .  

As mentioned above, ordering-field boundary conditions are realised in binary 
mixtures near container walls that adsorb one of the components preferentially. Recent 
optical experiments (Beysens and Leibler 1982, Franck and Schnatterly 1982) indicate 
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critical anomalies in the boundary fluorescence and reflectivity of such systems. As 
far as we known, the power-law decay ( 1 )  of the order parameter at criticality near 
a planar wall has not been verified experimentally. The experimental determination 
of order-parameter profiles of the type we have considered is very difficult. The 
characteristic size L of the system should be large enough so that the order parameter 
can be probed locally and there is scaling behaviour. However, if L exceeds the 
maximum correlation length 6 = T - T$” fixed by the temperature resolution, the 
order-parameter profile deviates significantly from the critical profile. 

As mentioned in the first footnote, there is a crossover in the order-parameter 
profile at a microscopic distance a from the boundary. From equations (7) and (16) 
one sees that the order parameters at central and boundary points in a confined 
geometry of characteristic size L have the ratio ( a / L ) % .  It is interesting to note the 
strong dimensional dependence of this ratio. Choosing a = 18, and L= 1 cm, we find 
( a / L ) % =  lo-’ for the index xb = Q  of the d = 2  Ising model. In d = 3, &,%; and 

Scattering experiments yield information about two-point correlations as well as 
the order-parameter profile. We conclude with a brief discussion of the ordinary critical 
behaviour of the two-point correlation function in hyperspherical geometry with zero 
surface field and Dirichlet boundary conditions. 

( a / ~ ) % -  

In semi-infinite geometry, conformal invariance implies the form (Cardy 1984b) 

for the corresponding correlation function, with r, defined as in (1) .  The function 
Y(y) has the asymptotic behaviour 

Here x, = ;(d - 2 + 711) and xb is given by (2), consistent with standard definitions of 
the ordinary surface exponent 'ill and the bulk exponent 7 (Binder 1983). Making use 
of the mapping that led from (1 )  to (16) and the analogue of (3) for two-point 
correlations, we obtain 

for both of the hyperspherical geometries discussed in connection with (16). 
For the d = 2 Ising model (Cardy 1984b), the n + CO vector model in 2 < d c 4 (Bray 

and Moore 1977), and the Gaussian model, the functions Y(y) are known explicitly. 
In the limits y + 0 and y + CO, with y defined by (20b), the asymptotic forms (19) apply, 
and the correlation function in the hyperspherical geometry is universal in the same 
sense as the order-parameter profiles considered above. 

Presumably (18)-(20) also hold in the case of ordering-field boundary conditions. 
The scaling function is not the same, of course, and in (19a) x, is the appropriate 
surface index for the extraordinary transition (Binder 1983) instead of the ordinary 
transition. 

We thank G W Ford, H A Kastrup and J Lajzerowicz for helpful comments. 
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